If it's not what You are looking for type in the equation solver your own equation and let us solve it.
256+b^2=1150
We move all terms to the left:
256+b^2-(1150)=0
We add all the numbers together, and all the variables
b^2-894=0
a = 1; b = 0; c = -894;
Δ = b2-4ac
Δ = 02-4·1·(-894)
Δ = 3576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3576}=\sqrt{4*894}=\sqrt{4}*\sqrt{894}=2\sqrt{894}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{894}}{2*1}=\frac{0-2\sqrt{894}}{2} =-\frac{2\sqrt{894}}{2} =-\sqrt{894} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{894}}{2*1}=\frac{0+2\sqrt{894}}{2} =\frac{2\sqrt{894}}{2} =\sqrt{894} $
| 108=-12n-4(5n+7 | | t=92-45 | | x(40-2x^2)=0 | | 2.1x+0.5=2x+0.01 | | 16x+21=28x=9 | | (27÷64)^x+1=1 | | v/4=3/11 | | 56/55=7v/11 | | 11/7=v/6 | | 3x+4+5+6x=90 | | v/9=17/13 | | 5(2y-8)=20 | | v=42(2) | | v=84 | | -12x-(-12)=3-12x | | -8-4x=-4x-(-16 | | 9(5)=y | | 8j=-9−j | | 3/x-3+1/x-3=2 | | v=6(7)2= | | 2r=82 | | -2x+-12=30-2x | | 2a-22.8+a-3.5+a+1.2+20.5=360 | | -14+3(x+10)=7(2x+4 | | 2(7.5-2y)+4y=15 | | 2+5x=28=90 | | 6q+10=22 | | -4-2x=-2x+-4 | | -7x-(-35)=35+14x | | q=55−26 | | (3c+7)(3c−7)= | | 7x+10=3x+18 |